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Dimensional Hermite Polynomials
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Abstract: In this paper, we derive generating relations involving two dimensional Hermite polynomials
Lie-algebraic method.Some new and known generating relations related to
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Hi (y1,72) by using
H,(Lfrz(yl, y,) are also obtained.
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1. Introduction

The Hermite polynomials of several variables arise
quite naturally in almost all problems relating to quantum
systems described by means of multidimensional quadratic
Hamiltonians [3-6]. The two dimensional Hermite polynomials
H (R)(yl, v,) are defined by means of the generating function [2]

oo

1 a,"a
exp [—EaRa + aRy] = Z o

nm=0

H“”(y) (1.1)

Here a; and a, are arbitrary complex numbers combined into
vector a = (a,a,).

aRa = E , ;R ay
ik=0

aRy = Z » @Ry i
ik=0
and R is the symmetric matrix

R11 R12
R=|Riz Ry
The two dimensional Hermite polynomials H,(f:i(yl,yz)

defined by Eq.(1.1) satisfy the following differential and pure
recurrence relations:

0
By H(R)(YvYZ) = R11an 1m(y1'y2)+R12mHnm 100Y2)
1

0
By (R)(YvYZ) _R12an 1m()’1'3’2) +R22mHnm 10 y2)
2

HT(Lilm(yllyZ) = (Ruy1 + R12Y2)Hr(5r)1(Y1'J’2) — RynH,_1;m(V1,y2)
= RoymHyp 1 (V1,Y2),

H(R)+1(.V1'YZ) = (Ri2y1 + Ry22) nm(Y1'3’2) — RpnHy_1;m (Y1, Y2)
= RyymHpm_1(V1,¥2)-(1.2)

The differential equation for two dimensional Hermite

polynomials H,(lfg(yl, y,) is given as
1 2 2 2 0
—R + 2R -R + (15—
(R11R22 —R,? " dy1? " 0y, 9y, - aJ’zz) O 9y,

9 .
tyg )=t m))Hoe (y1,y2) = 0.(1.3)

The Rodrigues type formula for two dimensional Hermite

polynomials H,(f:i(yl, y,) is given as

1
HE 31,75) = (=1 @ eCDYRY (1.4)

ay " dy,™

In the quantum mechanical application for the case of the
absence of an extranal force,y = 0. Suppose that R;; = 0 and
R, = 0,then eq.(1.1) gives

1 1
E = exp [—§R11a12 - ERzzazz - Rlzalaz] (1.5
After expanded in Taylor’s series and introducing the notation
Ry _ |Rpay
r=———,a= |-
+ Ri1R22 Ryay

and using the associated Legender functions [2]
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(-1, s ae
244! (z* - 1)z dzats 1-2z%4

PS()_

the formula for two dimensional Hermite polynomials of zero
arguments is obtained as

H®(0,0) = ! (-1 2" anRzzz(r

1 + (m n)/2
—)

where (1, =min (m,n) and integers m,n must have the same
parity otherwise the right hand side equals zero.

For coinciding indices

H® (0,0) = n! (~detR)ZP, (——2). (1.7)

v—detR
where P,(z) being the Legender polynomial.

For non zero vector y function H( )(yl, y,) can be
written as a finite sum of products of the usual Hermite
polynomials [1]

R,;"R
(%) V2HE (1, 72)
Hmn
Z(— 2R, k n!m! o fi (L
1/R11R22 =R m -l J2R,, """;/21!222
where

fi = Ruyi + Rizya, fo = Ripyi + Ryzy,-(1.9)

Immediately from the generating function (1.1), the expression

for H(R)(yl,yz) in terms of H(R)(O 0) and variables f;, f;
defined by Eq.(1.9)is obtained as

H® (1, 72) =Z Z n, m HP QO (1.10)

n
=0 0

k=
‘Consequently, H) (y,,y,) is a polynomial of f, and f, with

the coefficients expressed through the Gegenbauer
polynomials.

In this paper, we consider the problem of framing
H (R)(yl,yz) into the context of the representation T, , of four
dimensional Lie algebra G(0,1). In section 2 we obtain
generating relations involving H,(Lm(yl, y,) and associated
Laguerre polynomials L (x). In Section 3, we consider some
special cases which would yields many new and known
generating relations.

2. Representation T of G(0,1) and generating relations

1

Within the group-theoretic context, indeed a given class
of special functions appears as a set of matrix elements of
irreducible representation of a given Lie group. The algebraic
properties of the group are then reflected in the functional and
differential equations satisfied by a given family of special functions,
whilst the geometry of the homogeneous space determines the
nature of the integral representation associated with the family.

We have the isomorphism G(0,1) =L[G(0,1)] ([7];
p.36), where 4-dimensional complex local Lie group G(0,1) is the
set of all 4 X 4 matrices of the form ([7]; p.9)

T

1 ce* a 1

(0 e* b 0

g= 0 0 1 0 ,b,c,T€C, (2.1)
00 0 1

A basis for the Lie algebras G(0,1) = L[G(0,1)] is provided by the

matrices

0 0 0 0 01 0 0
0 0 1 0 0 0 0 0
Jt=1o 0 0 o |, J=|l0 0o 0 O
\o 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

01 0 0 0 0 0 O

J2=]lo 0 o o [|,E=lo o 0 0 [,(2
0 0 0 0 0 0 O

with commutations relations

U3 051 =4J%,U"J 1 = —E,[E,J*] = [E,J°] = 0,(2.3)

The irreducible representation T, , of G(0,1) is defined for each
w,u € C such that u # 0. The spectrum S of this representation
is the set {—w + k: k a nonnegative integer} and there is a basis
(fm)mes for the representation space V, In particular, we are
looking for the functions f,.,,(¥1,¥2,4,S) = Z( )(yl,yz)q s™ such
that

]3fnm = nfnm' Efnm = anm']+fnm = .ufn+1m']_fnm
= (Tl + w)fn—lm'

CO,lfnm = U+]_ - E]3)fnm = wanmiu # 0. (24)
forall nes

The commutation relations satisfied by the operators
J3,JEE are

U3 J*1 =45 U*J 1= —E,[E,J*] = [E,J°] = 0.(2.5)

IJSER © 2013
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1850

ISSN 2229-5518

The linear differential operators ]i,]3,E takes the form

)
J¥ = (R +R12)’2)q_qa_yl'
;o= R Ru)
(Ri1Ry, — R122)q 2 dy, 12 dy,”’(2.6)
)

3 = _
J q 3’
E = 1,

and satisfy the commutation relations (2.5).

There is no loss of generality for special function theory if

we set w =0, u =1, then in terms of the function Z( m V1 Y2),
relation (2.4) reduce to

((Ruyr + Rizyz) — _) (R)(YPYZ) = n+1m(Y1'Yz)

1 d
R Ro_p.2Rag —R Z8 (y1,y,) = nZ ,
Ri1Ry; — Rlzz( 22 By 29y, ) (3’1 Y2) =nZ,” 1m(Y1 Y2),
0> Ry, 0° —_— 0 Ry 0
(aylz Ry, ayl ayz ( 11V1 12}72)(

Ry 0y,
n(Ry1R R
ii%%—ﬂ%%Wmnrw 2.7)
22

Again if we take the functions f,,,(¥1,¥.,9,5) = Z,(L}:,)L(yl,yz)q"sm
such that

]I3fnm = mfnm' E,fnm = anm'],+fnm = .ufnm+1'],_fnm
= (m + w)fnm—li
CIO,lfnm = (jl+],_ - El],3)fnm = wanmiﬂ # 0. (28)

for all m € S,where the differential operators J'%,J'3,E’ are given
by

J* = (Rizyi +Ryy,)s — Sa—yz,
Jm = -1 (R O _R )
B (Ri1Ry, — R122)5 1 dy, H 0y, '(2.9)
0
3 _ v
J Sog
E = 1,

and satisfy the commutation relations identical to (2.5).

just as before taking w =0 and p =1 relations (2.8)
becomes

d
((Rizy1 + Rpzy2) — 3y, )Z(R)(YPYZ) = nm+1(y1'y2)

- 7 (Riz5— i — Ry _)Z(R)(%'YZ)
Ri1Ry; — Ry, dy, ®
=mZ, 1(3’1'372)

0? R, 02 R +R R12 )
0y,% Ry 0y, 0y, Rz 223’2)(6 R11 a)ﬁ

m(Ry1Ry, — R
+ (“; 1”%®@m@—0(mm
11

(

We observe that from (2.7) and (2.10) that Z,,(yy,¥,) =
H(R)(yl,yz) where H( )(yl,yz) is given by (1.1) It follows that the

functions f,m (¥1,¥2,9,5) = Hpm (V1,¥2)q™s™, n € S form a basis
for a realization of the representation T,; of G(0,1). This

representation of G(0,1) can be extended to a local multiplier
representation T(g), g € G(0,1) defined on F, the space of all
functions analytic in a neighbourhood of the point

.%2°%4°%s% = (1,1,1,1).

Using operators (2.6), the local multiplier representation
([71;p.17) takes the form

[T(expaE)f1(¥1,¥2,9,8) = exp(a)f(V1,¥2,9,5),

[T (expb ) ) f1(V1,¥2,9,5) )
q
= exp (71 (2R11 Y1+ 2Rz,

qb,
=biRu@)) |\ 1_)7_ Y2, 4, S ),
1

[T(exped ) f1(V1,¥2,9,5)

= 1 2
(R11R22 - R12 )Y1q
1Ry,

(Ri1Ryp — R122))’2q

;q;S )

[T(expti/°) 1V, Y2, a,5) = f(V1,¥2,9€™,5), (2.11)

for feF.If g€ G(0,1) has parameters (a,b,,c,,7,) then

T(g) = T(expa,E) T(expbyJ*) T(expcyJ~) T(expt,J?)
and therefore we obtain

[T@Df1V1 Y2 4,9) )
q
= exp (a1 + 71(2R11Y1 + 2Ry, — b1R11q))

b R
_f(y (1_E+ R >'y2<1
Y1 (RiiRy — Rip)yiq

1Ry .
- 5 ,qett,s |. (2.12),
(Ri1R2 — Ri27)y2q
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The matrix elements of T(g) with respect to the analytic basis

fum (1, ¥2,4,5) = Him(y1,2)q"s™, are the functions Ay(g),
uniquely determined by Ty, of G(0,1) and we obtain relations

T finl 0172005 = D 4@ fom G0, 9210,9),
=0

=012, ..,(2.13)
which on simplification yields

qb
€xp (a1 + 71 (2R11Y1+ 2R3y, — biRy1q) + T1k)

b R
ngm()ﬁ(l_ﬂ"' = 2 )J’z(l
Y1 (RiiRyz — Ri2)yiq

_ c1Ry,
(Ri1Ryp — R122))’2q

,qet,s

- Z A @DH® 0 y)q kL= 012, .. .(2.14)

=0

The matrix element 4;,(g) are given by ([7]; p.87(4.26))
Au(g) = exp(a; + kt)cF L (=bycy), k, 1 = 0.(2.15)

Substituting (2.15) into (2.14) and simplifying, we obtain the
generating relation

qb
€xp (71 (2R11Y1 + 2R3y, — b1R11Q))
b R
Hfm y1<1—ﬂ+ — ),y2<1
Y1 (RiiRa — Rip)yiq
_ 1Ry, )
(Ri1Ryp — R122))’2q

=) e U b e 00,2 k= 0,1,2,.(216)

=0

Again taking the operators (2.9) and proceeding exactly as before ,
we obtain the generating relation

sb
€xp (72 (2R12y1 + 2Ry5y, — bszzs))

Hﬁr()’1(1—%),yz(l—ﬂ+

2
(R11R22—R12°)¥15 Y2

C2Rqy1 )
(R11R22—R12%)y2s
[ee)

=Y & L by HE (r, )8 T = 012, (217)
=0
3. Special Cases

We consider some special cases of generating relations
(2.16) and (2.17).

1. In the quantum mechanical application if we consider the
case of the absence of an extranal force i.e, when y = 0 and using
eq.(1.5) in (2.16) ,we obtain the generating relation

exp(—biRu @D HE(0,0) = D" e ¥ 1L (=bye ) HEY (0,0)g ™k

1=0
=0,12,--.(3.1)
Similar results can be obtain for (2.17).

1. Using relation (1.6) in generating relation (3.1) , we get the
relation between Associated Lagender functions and Lagurre
polynomials,

mik k m
exp(—biR11q)) thni! (—1) 2 Ry12R;;2

m+k
mrk on-ky/2
—1) 4 Py C

r?
r

Vrz—1

).

- Z KU (=by ) H® (0,0)g %, k = 0,12, . (3.2)

=0

Further for coinciding indices using (1.7) in relation (3.2) we obtain
the relation between Lagender and Lagurre polynomials,

Z —Ry;
exp(—biRy1@))n! (—detR)2 P, (——)

v—detR
=) e L by HE (000"
n=0
=0,1,2,.(3.3)

where P,(z) being the Legender polynomial.
Similar results can be obtain for (2.17).
1. Using relation(1.10) in generating relation (2.16) we obtain

the expression for H,(Lfrz(yl,yz) in terms of H,(LQ(O,O) and
variables f;, f, defined by Eq.(1.9)

qb
€xp (71 (2R3 Y1+ 2R3y, — b1R11q))

b R
Hfm y1<1—ﬂ+ — ),y2<1
Y1 (RiiRy — Rip)yiq

_ 1Ry, )
(Ri1Ryp — R122))’2q
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=Y ek bie) ) Y L m HED OOk
=0 u=0 v=0
=0,12,-.(3.4)
where
qb, 1Ry,
fi=Ru(y (1 - )
! e Y1 (RiRy — Ri)niq
1Ry,
+ R,y (1 — )
12 (Ri1Ryp — R122))’2q

qb, 1Ry,
fo =R (y (1 -—+ )
2 e Y1 (RiiRy; — Riyviq

+ Ryyy (1 - ‘iz )
22 (Ri1 Ry, — R122)YZq

1. Further we can find relations for the case when R,, =0
and R;; =0 from relation (2.16) respectively as follows

b
€xp (qz_l (2R11 Y1+ 2R3y, — b1R11q)) Hgy, (3’1 (1 -

). (1+:282)
Y1 Y2 R12%¥2q

= D e L (b H (01, 2)a 4 ke = 0,12, (35)

1=0
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and

qb cR cR
exp(2R12y2)Hin (y1 (1 - y— - m) Y2 (1 + m))
1 12 1 12 2

[ee)

= D e L (b H (1, 2)q ke = 0,12, (36)

1=0
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